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Section 1 

SUMMARY 

The optimal tuning of multiple tuned-mass dampers for the 
transient vibration damping of large space structures is 
investigated. A multi-disciplinary approach is used. Structural 
dynamic techniques are applied to gain physical insight into 
absorber/structure interaction and to optimize specific cases. 
Modern control theory and parameter optimization techniques are 
applied to the general optimization problem. 
for multi-absorber multi-DOF vibration damping problems is 

presented. 

A design procedure 

Classical dynamic models are extended to investigate the 
effects of absorber placement, existing structural damping, and 
absorber cross-coupling on the optimal design synthesis. 
uncoupled dynamic optimization technique is developed which 
allocates the absorber mass budget over multiple absorbers in 
order to optimally damp the transient response. 

An 

The control design process for the general optimization 
problem is formulated as a linear output feedback control problem 
via the development of a feedback control canonical form. The 
design variables are expressed as control gains, and the 
analytical techniques of feedback control theory, both classical 
and modern, are applied to absorber design. A nonlinear 
parameter optimization method is developed and applied to an 
output feedback formulation of the vibration damping problem. 

The techniques are applied to sample micro-g and pointing 
problems on the NASA dual keel space station. Damping levels in 
the range of 10 - 20% are achieved with two tuned-mass dampers. 
The potential damping performance gains obtained through the use 
of tuned-mass dampers on lightly-damped structures merits the 
further study of the hardware issues associated with these 
devices. 
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SECTION 2 
INTRODUCTION 

Many proposed future large space structure designs, including 
the NASA Space Station, may need to incorporate active and/or 
passive damping mechanisms in order to meet pointing, slewing, or 
microgravity acceleration requirements. Methods for implementing 
active and passive damping have been the subject of studies by many 
investigators [l-91. Many of these studies have indicated the 
merits of passive damping, either in itself or in concert with 
active damping. 

Incorporation of passive damping for vibration suppression in 
the design of large space-structures offers many benefits. Passive 
dampers require no power source, are inherently stable, and are 
potentially simple and reliable. Properly designed passive damping 
treatments can greatly reduce the settling time in transient 
response problems and reduce the peaks of steady state response 
problems. 

The existence of small amounts of passive damping in an active 
control system can reduce active control effort such as actuator 
force, stroke, bandwidth, and system penalties such as the number 
of actuators, added mass, cost, and on-board power and 
microprocessing needs [5,61. Increased performance over a larger 
bandwidth can be attained. In addition to improving system 
performance, the use of passive damping technology can be expected 
to ease the task of control system design. Proper implementation 
of passive damping in an active control system can result in a more 
robust, reduced-order control design with greater stability and 
reduced response to noise. Finally, passive damping devices 
provide an increased safety margin for active control systems. 

Passive damping can be added to a structure through a variety 
of mechanisms including constrained layer treatments, 
impact/friction joints, discrete dampers, and tuned-mass dampers. 
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Each damping treatment performs best for certain classes of damping 
problems. The tuned-mass damper is especially well-suited for 
damping large structures which are characterized by low, highly 
distributed strain energy, e.g., the NASA Space Station. The NASA 

I O C  Space Station response to orbiter docking exhibits small loads 
and only a few inches of deflection over the distance of a baseball 
field. The corresponding low strains may not be enough to 
efficiently llwork" a distributed damping material, or a discrete 
damping material or device placed in the load path. The advantage 
of the tuned-mass damper is that it is "tuned" to draw energy from 
the main structure to a mechanism which works the damping material 
or damper (Figure 2-1). Some disadvantages of the tuned mass 
damper (also termed vibration absorber) are that it adds 
nonstructural mass and typically provides only modest levels of 
damping. 

Tuned-mass dampers are used throughout industry in 
applications on ships, helicopters, cars, tall buildings, and 
rotating machinery. The classical two degree-of-freedom 
steady-state vibration absorber solution of Timoshenko 1101 and Den 
Hartog [ll] has been widely used to determine the optimal physical 
parameters (k,c,m) for absorber designs. Previous investigators 
have addressed the optimal placement and tuning of absorbers on 
beams and plates [7,8,9] and the use of absorbers for combined 
passive and active damping [ 3 , 4 1 .  Some included hardware 
experiments with vibration absorbers [ 3 , 4 ] .  Much of the emphasis 
has been placed on developing absorber designs for use in damping 
responses to steady-state excitation. 

The present work concentrates on the application and extension 
of absorber design and optimization techniques to a multi-mode, 
multi-dof, large space structure, namely the NASA Space Station. 
The principal issue addressed is the optimal tuning of several 
absorbers for the transient response of a multi-dof system, 
including the effects of modal coupling, existing structural 
damping, absorber placement, and absorber mass. The Space Station 
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ABSORBER 2-DOF REPRESENTATION 

M, = PLANT MODAL MASS 

kl = PLANT MODAL STIFFNESS 

Figure 2-1. Tuned-Mass Damper One-Mode, 2-DOF Representation 
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is subject to many transient disturbances such as docking, orbit 
reboost, crew motion, and payload slewing. A notable steady-state 
excitation source is the Science Research Centrifuge, which rotates 
at a frequency in the bandwidth of the primary structural modes. 
Because of the relatively advanced state of development of 
steady-state absorber design techniques, only the transient cases 
are considered in this study. 

The remainder of the report is divided into four major 
sections. Section 3 reviews the classical two-dof problem and 
examines the two-dof transient response problem. The remainder of 
the section examines dynamic techniques for optimizing multi-mode 
problems with several absorbers. In Section 4 ,  modern control 
techniques are employed to optimize the physical parameters of the 
absorbers. Section 5 applies both the dynamic and modern control 
techniques to Space Station pointing and microgravity responses and 
compares the results. A design procedure is presented in Section 6, 
based on the analysis and results of Sections 3 - 5. Finally, 
section 7 offers recommendations for further study. 
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SECTION 3 
ABSORBER DYNAMIC ANALYSIS 

3.1 Vibration Absorber Concept 

Figure 2-1 illustrates the classical absorber problem where 
the absorber mass, spring, and damper (m2, k2, and c2) are attached 
to a single mode, represented by the modal mass M1, and modal 
stiffness K1. In this representation, the stiffness of the 
absorber mechanism and damping element are combined in k2, the 
structural and viscous damping of the absorber are combined in c2, 
and the frequency response of the damping element is assumed to be 
uniform. In this study, the damping element is treated 
generically, and could represent a variety of electromagnetic, 
fluidic, viscoelastic, or other types of passive devices. The 
structural damp.ing of the single mode plant will initially be 
assumed to be zero. 

The principle behind the vibration absorber is the tuning of 
the mass, M2, and the stiffness, k2, to a frequency that couples as 
much as possible with the mode to be damped. This maximizes the 
relative displacement across the damper c2, which is effectively 
amplified such that it is greater than the displacement of the 
plant mass M1. The concept can be likened to tuning a sprung 
payload to the peak of the transient relative shock spectrum 
(Figure 3-1) in order to maximize the energy transfer to the sprung 
mass, as opposed to tuning it to a valley, where energy 
transmission is minimized. The plant deflections, velocities, and 
accelerations at M1 can be amplified by factors of 8 to 10 at M2. 
For this reason, vibration absorbers are well-suited for problems 
with highly distributed strain energy, as energy is drawn to the 
site of the damping element or material. Once the absorber is 
tuned to interact with the desired mode, the damper strength c2 is 
tuned to maximize the energy dissipation. 
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3.2 Classical Vibration Absorber Steady-State Solution 

This discussion reviews the classical absorber solution 
presented in references [lo] and [ll], which is the foundation for 
the dynamic techniques presented in this section. The equations of 
motion for the system shown in Figure 1, assuming zero structural 
damping (cl=O) are: 

(3-la) 
.. mlxl + c2kl + (kl + k2)x1 - c2G2 - k2X2 = F 

.* m2x2 + c2k2 + k2x2 - c2G1 - k2X1 = 0 (3-lb) 

The classical steady state vibration absorber solution 
minimizes the peak response (xl) of the system to sinusoidal 
steady-state excitation. The approach describes the transfer 
function between the response of the structure (xl) and excitation 
(F) in terms of the physical parameters of the absorber. The 
damping performance is optimized by equating the two peaks of the 
transfer function. Adopting similar notation to that of reference 
[lo], the non-dimensional transfer functions (plotted in Figure 
3-2) can be written as: 

where : 

fl = M2/Ml 

6 = OAIOo 

p = c l 2  M I W o  

X, = F/k,  

y = om, 

0 0 = ,/k,/MI 

0 A = Jk2/M2 

(3-2b) 
thru 
(3-2h) 

The optimal solution is obtained through the selection of the 
non-dimensional absorber parameters: the mass ratio p ,  the damping 
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ratio u,  and the frequency ratio, 6 . Examination of the equation 
for the maximum plant response, 

( X l / x O ) M A X  = J I 2  + P I  l P  (3-3 1 

yields that the performance of the absorber increases with the 
weight of the sprung mass m2. Thus, the absorber mass optimization 
for a single mode problem drives the sprung mass to its maximum 
allowable value [l]. Therefore, a suitable mass value can be 
chosen a priori based on trade studies, or set at the maximum value 
allowed by the mass budget. 

The optimal frequency tuning for a selected mass ratio is: 

6 = 1/1 + P (3-4) 

and the optimal non-dimensional damper setting is: 

n 

where 

M =  4 b + K 1  . -  
l + b  

4 4  + 243 1 
P =  

!i - @'X1 /x, \ -  ' 
' I  

P(X1 /Xo 1' - M 
G P T  = 

Q =  

N =  

r I 

(3-5a) 

2 

(3-5b) 
thru 
(3-5e) 

A series of curves representing the transfer functions for a sprung 
mass ratio of p=.02 is shown in Figure 3-2. Note that for p=O, the 
optimal frequency ratio (fiOpt) results in two modes (poles) equally 
spaced about a zero near m e  initial plant modal frequency. This 
case corresponds to the classical "Undamped Vibration Absorber" 

10 



[12] wherein practically all of the energy is transferred to the 
absorber when the system is forced at the initial plant frequency. 
At this point, the sprung mass has been tuned to maximize 
absorber/structure interaction, and maximize the relative motion 
across the damper. In fact, previous investigators [ 4 1  have shown 
that the optimal value of 6 maximizes the relative motion across 
the damper on average in both modes, as the relative motion in both 
modes is approximately equal. 

As the damping ratio v is increased from zero, the overall 
magnitude of the transfer function decreases until the optimum 
ratio of p=.086 (for p=.02) is reached, and the peak response of 
both modes is minimized. As the value of p is increased further, 
the absorber performance is reduced. The reason for this is that 
the damper force is too high and restrains the relative motion 
between the two masses. As the damper ratio is increased still 
further, the two masses become 'Ilockedll together and the resulting 
transfer function appears to contain only a single mode. 

In the case where it is desired to tune the absorbers to 
minimize acceleration, the transfer function can be normalized such 
that: 

and the same results are obtained. 
The concept of an optimum damper value or loss factor bears 

resemblance to other techniques such as the modal strain energy 
method which are used to optimize the damping coefficient in other 
types of damping devices. 

3 . 3  Optimization of Two-DOF Model for Transient Response 

This section reviews the classical techniques for optimal 
tuning of the 2-DOF absorber, and details the development of 
techniques for optimization of multiple passive vibration absorbers 
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for multi-DOF large space structures. The dynamics of the absorber- 
structure interaction are examined, optimality criteria for the 
impulse response problem are evaluated and the effects of existing 
structural damping and absorber placement are investigated. A 
technique for the optimization of the mass distribution among the 
absorbers is developed under the assumption that coupling effects 
between vibration modes are insignificant when the vibration 
absorbers are attached. Finally, the quantification of coupling 
effects through the absorbers is discussed. 

3.3.1 Characterization of Space Station Disturbances 

Because of the many different Space Station disturbances and 
the continuing evolution of the IOC design in the Phase B program 
(there were three significant configuration changes during the 
course of this study), it was decided to model the transient 
disturbances using initial conditions corresponding to a unit 
impulse (unit initial velocity). This simplification is justified 
by the relatively short duration of the transient pulses in 
comparison with the long periods of the dominant structural modes 
of the Space Station (2.0 - 4.0 sec) . This is evident in Figure 
3 - 3  which shows an FFT of the NASA 500 lb., 1 sec orbiter docking 
input. An FFT of the crew motion input is shown in Figure 3-4. 
Note that there are several "notches" in the FFT, where specific 
Space Station modes may not be excited. Small changes in the 
design evolution of the Space Station could easily change the mix 
of modes which are excited. Because the impulse input excites all 
modes, some of the dependence of the study conclusions on a 
specific Space Station evolutionary model is removed, and the 
results can be applied to a more general class of broad-band 
excitation problems. Henceforth, the remainder of the study 
optimizes the absorber parameters for the case of unit impulse 
input and all the results are normalized to that condition. 
Because the system linear, the results can be multiplied by an 
impulse strength of 500 or 25, for the orbiter docking and crew 
motion impulses, respectively. 

12 
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3.3.2 Impulse Response Formulation 

The general formulation for the impulse response of the system 
in Figure 3-5 has not been solved in a closed form in terms of the 
absorber parameters. The method discussed here follows that in in 
reference [13]. The following equations are solved for the initial 
conditions of unit velocity: 

The solution is assumed to have the form 

and thus the derivatives have the form 

( z i ( r ) }  - (sC}e" 

(3-8a) 

(3-8b) 

(3-9a) 

(3-9b) 
{ i ( r ) }  - (s2C)eN 

Substitution of Eqs. (3-8) and (3-9) into the equations of motion, 
Eqs. (3-71, yields a matrix equation in the unknowns C1 and C2. In 
order f o r  nontrivial solutions to exist, the determinant of the 
matrix D must vanish: 

(3-10) 



2 C =1 

'1 = 2TwofST 

Figure 3-5. 2-DOF Absorber Model with Additional Damper to 
Model Existing Structural Damping. 
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The resulting fourth-order equation 
bqtM2s 4 + [M1c2 + M2(c1 + c2)]s3 + IMlk2 + M2(kl + k2) + c1C21s 2 

( 3 - 1 1 )  + ( k l c 2  + k c )S + klk2 = 0 2 1  

is analogous to the characteristic determinant of an undamped 
system. Unless there is a double pole, the four roots of Eq. 
( 3 - 1 1 )  occur as two pairs of complex conjugates: 

( 3 - 1 2 )  

The displacement solutions can be expressed in the form: 

where the amplitude and phase coefficients are determined by the 
initial conditions. Note that for the unit ‘initial velocity case, 
the values of A 1  and A2 are unity, and the amplitude coefficients 
are the inverse of the damped natural frequency. A simple Fortran 
algorithm is applied to solve the quadratic and obtain the 
displacement solution. The acceleration solution is found by 
differentiating Eq. ( 3 - 1 3 )  twice. For more general absorber 
analyses, the ALADIN multi-step integrator code is used, which 
employs the ADAMS method for integration. 

The above equations are used to generate Figure 3-6,  which may 
be viewed as the transient response analog to Figure 3-2. For 
clarity, the impulse response envelopes (which connect the peaks of 
the magnitude of the sinusoidal transient response) of the 
plant-absorber system are shown. The mass ratio f3 and the optimal 
frequency ratio 6 are .02  and .98 respectively, while the damping 
ratio IL is varied. The discussion of the effect of varying the 
damper strength in Section 3.2  also applies here. A low damper 
strength does not provide sufficient damping performance while an 
overly large damper strength locks the damper, and results in 
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sub-optimal damping performance. Note that for small 
modal damping, the ordinate in Figure 3-6  could also be 

amounts of 
labelled: 

( 3 - 1 4 )  

as an alternate way of normalizing the data. 

3 . 3 . 3  Examination of Criteria for Optimization of the Transient 
Response 

The next sections examine the effect of different optimality 
criteria on the tuning of the absorbers and the minimization of the 
transient response. Prior investigations [ 3 , 4 ]  have discussed pole 
placement and minimum quadratic cost methods for tuning absorbers 
to optimize the transient response, in addition to the steady-state 
solution. In this comparative discussion, the structural damping 
of the plant (cl) is assumed to be zero. 

The optimal pole placement solution maximizes the rate of 
modal energy dissipation. As with the classical steady-state 
solution, the mass ratio p is selected first, based on a trade 
study of performance vs. available mass budget. Then, the absorber 
parameters 6 and p are adjusted to locate the two plant and 
absorber poles as far left as possible in the S-plane. This 
maximizes the modal damping and typically decreases the system 
response time. Derivations in reference [ 4 ]  show that application 
of the pole placement criterion results in a double pole at the 
extreme left of the root locus (Figure 3 - 7 ) .  For comparison, the 
pole locations of the steady-state solution are also shown. The 
pole placement solution exhibits higher modal damping ratios for 
both poles. Although it is not clearly discernible in this region 
of the root locus, both poles in either the pole placement solution 
or the steady state solution have the same modal damping (phase 
angle in the S-plane). 

The value of 6 which creates a double pole is identical to 
that of the steady-state minimize solution (Eq. 3 - 4 ) :  
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6 = 1/1 + P (3-15) 

in the characteristic equation opt Substitution of this value of 6 
and solving for the pole locations and damping yields [4]: 

Im(S) = l/24(4 - p ) / ( l  + p )  (3-16b) 

(3-16~) 

Figure 3-8 shows the impulse response of the two-dof system with a 
5% modal mass absorber optimally tuned using the pole placement 
criterion. 

Another optimal design technique found in the literature is 
the minimum quadratic cost solution [3,4]. Again, the first step 
is to choose the desired mass ratio, p and then proceed to optimize 
the other two absorber parameters, 6 and p. This criterion 
minimizes a cost function which penalizes the total energy in the 
system, and thereby maximizes the flow of energy out of the system. 
The quadratic cost function of the system states is 

00 

J = 1/2jxTQx dt (3-17) 
0 

where the matrix Q is formed such that the quadratic terms are 
equated with the system's total non-dimensional energy. Evaluation 
of the above integral yields 

T J = 1/2 xo Pxo (3-18) 

where P is the solution of the Lyapunov equation for the equations 
of motion given the initial state of vector xo corresponding to 
unit initial velocity. Numerical search or carpet-map techniques 
can be used to find the optimal values of 6 and p which minimize 
the cost (J) for a fixed mass ratio ( p ) .  Figure 3-9 shows the 
resulting impulse response for a two-dof system with a 5% modal 
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Figure 3-8. Impulse Response of 2-DOF System with  a 5% Modal Mass 
Absorber Tuned Using the Pole Placement Criterion. 

N O R ~ L I I E D  FREaENCY WnT 

Figure 3-9. Impulse Response of 2-DOF System with  a 5% Modal Mass 
Absorber Tuned Using the Quadratic Cost Criterion. 

Figure 3-10. Impulse Response of 2-DOF System with  a 5% Modal Mass 
Absorber Tuned Using the Classical Steady-State Criterion. 
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mass absorber optimally tuned by this criterion. Figure 3-10 shows 
the resulting impulse response for a two-DOF system with a 5% modal 
mass absorber optimally tuned using the classical steady-state 
criterion. 

Insight can be gained by comparing the impulse responses of 
the one-mode system with absorbers tuned using the three different 
optimization techniques: classical steady-state, pole placement, 
and quadratic cost. Figure 3-11 compares the envelopes of the 
absolute value of the responses of Figs. 3-8, 3-9, and 3-10. Note 
that the pole placement solution does not exhibit the pronounced 
llbeating" effect of the other two solutions. Ultimately, the 
selection of the "best" transient response criterion may depend on 
specific requirements. Although all of the responses are similar, 
the classical steady-state solution appears to be the best. It is 
rather unusual that a steady-state optimization technique should 
provide the best transient response solution. This issue is 
examined further in the next section. 

3.3.4 Derivation of Energy Dissipated Through the Absorber 

The rate of change of mechanical energy through the absorber 
can be written as [141 

and is always negative because the system is passive and can only 
dissipate energy. Since 

Xrel = k2 - Gl 

and the damping force is 

Eq. (3-19) can be rewritten as 

22 

(3-20) 

(3-21) 



0 
0 
N 

0 

f 
N 
m 

0 

cn 

0 

0 aD W rt N - 0 0 0 0 

o r  n o  
3 

3 = 

0 m 

0 
c 

0 

r( 
r( 

I 
M 

w 

M 
.d 
Er 

5 

23 



dE/dt = FdGrel (3-22) 

Further understanding of the results of the previous section 
can be gained by looking at the energy dissipated through the 
absorber during the impulse response. Figure 3-12a shows the 
instantaneous power dissipated through the damper for a system 
tuned using the classical steady-state optimization criterion. 
Figure 3-12b shows the running integral of the function in Figure 
3-12a, which is the total energy dissipated through the damper at a 
given time. The envelopes of the corresponding curves for the 
pole-placement solution are also shown on both plots. Comparison 
of these curves reveals that the pole placement solution does 
initially provides the maximum rate of energy dissipation. 
However, the "beating" effect of the classical steady-state 
solution soon overtakes it. The net result is that the energy 
dissipated by the absorber tuned using steady-state design 
technique converges to the total energy in the system faster. In 
the next section, a fourth optimality criterion for minimizing the 
transient response is formulated. 

3.3.5 Development of a Cost Criterion for the Impulse 
Response Case 

The selection of the proper cost function for use in later 
optimization work on multi-dof systems and in later parameter 
optimization schemes is further investigated in this section. 
Further research in this area resulted in a fourth technique, based 
on a minimum area criterion. A performance index is postulated 
which penalizes the absolute value of the state deflection vector, 
xl(t). This performance index is expressed in the form of the cost 
function 
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Figure  3-12a. Comparison o f  Instantaneous Power Dissipated 
Through Absorber During Impulse Response. 
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F igure  3-12b. Comparlson of the Running In tegra t  o f  the Instantaneous 
Power Dissipated During t ie  Impulse Response. 
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Insight into the nature of the performance index is gained by 
numerical evaluation of the cost function and examination of the 
surface contours. The absolute value of the impulse response 
solution (Eq. 3 - 1 3 )  is integrated numerically over a large time 
interval such that convergence of the area to that of the infinite 
interval occurs. Given the analytic form of the impulse response 
solution, these trade studies do not require a great deal of 
computation time. Figure 3-13 shows the surface contours (the area 
under the displacement curve) for various values of 6 and p.. 

Although enlarged for clarity, each contour had a single minimum. 
The figure shows that for a mass ratio of p=.02, the optimum values 
of 6 and p are .98 and .090 respectively. The point on the graph 
indicates the values for the classical steady-state criterion, .98 
and .086 respectively, which are very close to the minimum of the 
cost J. The points for the pole placement and quadratic cost 
solutions are further away from the minimum to such an extent that 
they are off the plot in Figure 3 - 1 3 .  This explains the result 
mentioned in section 3 . 3 . 3 ,  where the steady-state design technique 
resulted in a better response than the other transient optimization 
methods. 

Figure 3-14 compares the root loci for the solutions using the 
steady-state criterion and the minimum area criterion (p.=.98 and 
p.90 respectively). The roots of the two solutions are very 
close. The difference in the solutions can be examined in terms of 
the modal damping. The roots of the steady-state solution have 
equal modal damping. Because there is a slight difference in 
frequency between the two poles, the amplitude of the impulse 
response of the higher frequency pole is slightly lower and damps 
out slightly faster. Therefore small performance gains can be 
acquired by shifting the root locus to give the lower frequency 
pole more damping (a slightly larger phase angle in the S-plane) . 
Thus, the minimum area criterion locates the poles in a position 
which maximizes the modal damping and the beating effects 
collectively . 

Because the separation between the poles increases with 
increasing values of the mass ratio p, the difference between the 
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minimum area solution and the classical steady-state optimal 
solution will also increase. However, the difference between the 
frequencies of the two poles increases from 10% at a mass ratio of 
p=.02 to a modest 20% for a mass ratio of p=.20. The error is 
small enough that for all practical purposes, the designer can 
adopt the classical steady-state tuning equations to design an 
absorber which meets the criterion of minimizing the cost (Eq. 
3 - 2 3 ) .  The notion of using the classical steady state equations to 
arrive at a solution very close to the minimum of the desired cost 
function J is instrumental in developing the multi-mode 
optimization technique in Section 3.6.  In addition, the cost 
function (Eq. 3 - 2 3 )  which penalizes the displacement response is 
also adopted for use in the parameter optimization procedure 
described in Section 4. 

In an analogous manner, the acceleration impulse response can 
be minimized by implementing a minimum area under the acceleration 
curve criterion. The cost function is expressed: 

00 

J = /iSl(t)ldt ( 3 - 2 4 )  

0 
Figure 3-15 shows the contours describing the area under the 
acceleration response vs. u. The conclusions drawn from the 
previous discussion on minimizing the displacement impulse response 
apply for this case as well. 

3.4 Effect of Structural Damping on Absorber Optimization. 

The effect of structural damping on the optimal tuning of 
vibration absorbers is investigated in this section. Structural 
damping is properly added to the two-dof model by using a non-zero 
value for cl in Figure 3-15,  

( 3 - 2 5 )  

where 5 is the percent critical structural damping. Figure 3-16 

was created in the same manner as Figure 3-13,  i.e., by evaluating 
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the impulse response (Eq. 3-13) and integrating it numerically to 
find the area under the absolute value of the response. The plot 
shows the effect of structural damping on the location of the 
minimum cost. Note that as the amount of structural damping is 
increased, the impulse response is improved and the contours 
flatten out. The absorber P for minimum cost is near enough 
to the classical steady-state design that it can be concluded that 
small amounts of structural damping do not perturb the optimal 
design synthesis. 

Additional conclusions can be drawn by examination of the 
effect of structural damping on absorber optimal design from the 
viewpoint of the response settling time. Figure 3-17 depicts the 
settling time to 20% of the original impulse response peak versus 
the plant structural damping for a mass ratio p of 2%. The upper 
curve shows the same response time for the system without the 
absorber. The results indicate that a 2% modal mass absorber can 
significantly improve the settling time of systems with less than 
about 5% structural damping. Beyond the 5% structural damping 
level, the structure itself is dissipating energy so well that the 
absorber has little effect. Examination of the figure yields that 
for a 2% modal mass absorber, the response time to 20% peak is 
equivalent to that for the same plant without an absorber but with 
a structural damping level of 6%. Successive curves for larger 
absorber mass ratios than 2% would lie below the 2% curve as shown, 
having a shorter settling time. 

3 . 5  Tuning Laws for Multi-DOF Structures 

This section examines the tuning laws for a multi-dof 
Structures. Analyses of an early Dual Keel configuration space 
station model support the tuning laws presented in this section. 
The discussion of this model is kept to a minimum as the results of 

examples employing a later model are given in Section 5. Assuming 
a structural damping value of 1/2%, the response is calculated at 
the upper payload boom and the lab module due to a unit x-direction 
impulse input at the berthing node. A 2% modal mass absorber is 
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used, tuned to the single mode of importance at the payload boom. 
The ALADIN code, based on the multi-step ADAMS integration 
technique, is used to generate the impulse response for the 
vvclosed-loopvl (structure and absorber ) case. Figure 3-18 compares 
the responses at the payload boom before and after the absorber was 
added. Figure 3-19 compares the spectra of the two responses in 
Figure 3-18, where the FFT was obtained over the same 50-second 
time period. Figures 3-20 and 3-21 illustrate the respective 
results for the same analysis at the lab module response location. 
The results indicate that, in this case, the absorber did not 
couple the primary modes, and that the net solution was the linear 
sum of the two-dof response corresponding to the primary mode with 
an absorber on it, and the other higher frequency modes. 

In the process of conducting these analyses, two simple tuning 
laws were established for tuning absorbers to a single mode of a 
multi-dof structure. One tuning law describes the performance of 
the absorber at a particular location on a particular mode by 
introducing the notion of an effective absorber mass ratio 

(3-26) 

where the eigenvectors are normalized such that the maximum value 
of each mode is 1.0. This can be rewritten using modes normalized 
to the mass matrix by 

(3-27) 

where Ma is the mass of the absorber. Eqs. (3-26, 3-27) exhibit 
the sensitivity of absorber performance to location, which appears 
to be generally greater than the sensitivity to different tuning 
techniques. Embedded in the equation is the fact that a misplaced 
absorber is also tuned incorrectly, as the mass ratio Peff is a 
variable in all the classical steady-state tuning laws. Note that 
these statements do not include the effect of the added mass on the 
mode shape (i.e., the addition of the tuning mass alters the mode 
shape so that the absorber is no longer located at a maximum). 
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Figure 3-20. 

. .  .. . 

TIME I S E C l  

(b) With 2% Modal Mass Absorber 

Z-Direction Response at the Lab Module due to a Unit 
Impulse at the Docking Node. 
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However, the effect is negligible for reasonably small absorber 
mass ratios, and for most large space structure absorber 
applications, the above equations will suffice. 

Another tuning law describes the tuning of several absorbers 
to the same mode. The question is whether there is a theoretical 
performance advantage to using a single absorber or several smaller 
ones? Analyses bear out that for n absorbers at n locations with 
equal modal displacements, the absorbers should be tuned by the 
simple relations: 

m = M/n i 

c = C/n i 

ki = K/n 

(3-28a) 

(3-2833) 

(3-28~) 

Thus, two absorbers tuned according to the above relations will 
have the same effect as a single absorber whose optimally tuned 
parameters are M, C, and K. However, it is important to note that 
if both absorbers aren't placed at equal maxima locations for the 
same mode (e.g. the two tips of a free-free beam), there will be a 
reduction in performance because the net Peff for that mode will be 
lowered. Thus, aside from physical design constraints, it seems 
desirable to use a small number of absorbers. Ultimately, the 
design constraints associated with the use of certain spring and 
damper materials may dictate the number of absorbers which should 
be placed on a particular mode (e.g., for large n, the spring 
constants ki may become so low that it would be impossible to 
manufacture them.) 

3.6 Multi-Mode, Multi-Absorber Optimization 

The nature of the results shown in Figs. 3-18 - 3-21 indicates 
that for cases involving structures where the primary modes of 
interest are uncoupled, the tuning of absorbers to each of the 
primary modes can be treated independently. In addition, section 
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3.3.5 shows that the classical steady state solution and the 
optimal impulse response solution (Eq.3-23) yield nearly the same 
result. Consequently, by adopting the classical steady-state 
tuning laws, the absorber k and c (Eqs. 3-4 and 3-5) for each 
primary mode can be described solely as a function of the absorber 
mass ratio for that mode (pi). This suggests that a multi-mode 
optimization could be conducted by deciding how much absorber mass 
should be placed on each significant mode, and then tuning each of 
the absorbers using the classical steady-state criterion. Assuming 
an absorber was placed on each mode, the result is essentially the 
sum of n two-dof impulse responses corresponding to n modes. Since 
this technique assumes that the absorber does not couple the modes, 
the appropriate barometer of what constitutes coupling of the modes 
by the absorber is discussed in the next section. 

With this mass optimization technique in mind, it is desired 
to formulate the damping performance of a particular absorber 
tuned to a particular mode (by the classical steady-state 
criterion) in terms of the mass ratio, p. The cost function 
(adopted in Section 3.3.5) minimizes the sum over the modes of the 
impulse responses at a particular response location: 

(3-29) 

Thus, one can proceed to formulate the area under the absolute 
value of the impulse response curve as a function of the absorber 
mass ratio, p and any other pertinent systems parameters. To 
simplify the analysis, it is assumed that the area under the 
impulse response for each mode adds linearly to the total area 
under the collective modes (this assumption is justified in later 
examples). The integral in Eq. (3-29) can be expanded: 

(3-30) Jmode n + ... 
+ Jmode 2 - Jmode 1 Min JT - 

Given the form of the impulse response solution in Eq. (3-131, 
(Ppj - -yo t b e  n sinwdt 

d x1 - 
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the sum can be expanded in terms like: 

(3-32) 

The key to this method is that for a particular level of structural 
damping, the function for the area under the absolute value of the 
impulse response of a particular pole 

m 

(3-33 ) 

depends only on ( for wn approximately equal to ad. Furthermore, 
Eq. (3-3) can be equated with the steady-state dynamic 
magnification factor 

( X l ' X o )  = W 2 . f  1 = m 
MAX 

to yield 

(3-34a) 

z = 1/2JP/(2 + PI  (3-34b) 

I Given these equations, a unique expression for the displacement 

I area under each "2-dof mode" (the cost J) can be determined using a 
linear fit on a plot of the cost J versus the reciprocal of (: I 

I 

OD 

j l x l \  dt 

0 (3-35) 

And likewise for the area under the acceleration impulse response: 
OD 

(3-36) 

Figure 3-22 compares the fit of the actual area under the two-dof 
displacement response curve as a function of p with Eq. (3-35). 
Note that 1/2% structural damping is assumed. Also shown is the 
same fit for the acceleration case. The result is not surprising 
when one considers that all the absorber parameters and the 
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expression for modal damping (Eq. 3-34  above) are functions of only 

P o  
Given these unique functions, a global optimization over n 

primary modes can be conducted under the constraint of the total 
absorber mass available: 

subject to constraint, 

= P M + (3 M + ... PnMn 1 1  2 2  MaT 

Invok 

( 3 - 3 7 )  

( 3 - 3 8 )  

ng constrained multivar,ate optimixation techniques, n 
equations in n unknowns can be solved for p by finding the zeros of 
the matrix equation: 

i 

( 3 - 3 9 )  

( 3 - 4 0 )  

Software routines capable of finding the zeros of matrix equations 
can be found in IMSL, SLATEC, and other standard math libraries. 
For cases involving just two primary modes, a graphical technique 
can be used to examine the contours of the cost function (see 
Figures 3 - 1 3 ,  3 - 1 6 ) .  Once the mass ratio for each moLe is known, 
the absorber ki and ci for each mode can be determined based on the 
classical steady-state tuning laws. The technique is referred to 
as the "uncoupled dynamic optimization". It is applied to coupled 
and uncoupled Space Station examples in Section 5 ,  and the results 
are compared with nonlinear techniques developed in Section 4 .  
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3.7 Coupling of Impulse Response by Absorbers in Multi-DOF Space 
Structures. 

The addition of absorbers can introduce coupling between the 
otherwise orthogonal modes of a large space structure in two ways. 
The first is through spatial coupling, whereby the location of an 
absorber at the maxima of one mode also affects another mode. The 
effect is especially significant if the absorber is located at a 
location which is the maxima of both modes. The spatial coupling 
effect can be described in terms of an effective mass ratio: 

where n is the index for the mode without an absorber which couples 
to another mode with an absorber of mass Ma. 

The absorbers also introduce coupling through closely spaced 
modal frequencies. The tendency for frequency coupling increases 
with increasing values of the cross-mass ratio, Peff. Figure 3-23 
shows the results of a parametric study that investigates the 
coupling effect (by measure of the cost J) of an absorber that is 
tuned to another mode but possibly coupled to the mode of interest. 
The curves were generated by using the two-dof system (Figure 2-l), 
parametrically mistuning the value of the plant frequency, and 
evaluating the area under the curve. Note that no structural 
damping was assumed in the generation of this curve. The plot is 
interpreted using the following steps: 1) the value of Peff is 
determined based upon Eq (3-41), 2) the ratio of the frequency of 
the mode of interest to that of the mode with an absorber attached 
is selected on the abcissa, and 3) the corresponding area under the 
response is found on the ordinate. The plot is cut off at a 
maximum area of 126.0, which represents the area corresponding to 
the impulse response of the plant with 1 / 2 %  structural damping. 
Thus, if the point cannot be found on the graph which matches both 
W/Wl and Peff, there is no coupling. Modes with points falling 
within the interior of the parabola are coupled, and the effect of 
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Figure  3-23. Character izat ion of  Net  E f f e c t  o f  Absorber Spat ia l  
and Frequency Coupling. 
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the coupling on damping the mode of interest can be ascertained by 
noting the magnitude of the area under the response (cost). 

Figure 3-24  shows Figure 3-23  replotted on a log base 10 
scale. Several trends and conclusions can be drawn from this 
figure. First, the larger the effective mass ratio, peff, the 
greater the tendency there is to couple the damping effect of an 
absorber tuned to one mode with another. Second, the "parabolasf1 
are asymmetric, indicating that the mode of interest couples more 
strongly with a lower frequency mode that is damped by an absorber 
than a higher frequency one. This trait is confirmed by other 
investigators who showed that to damp the steady-state response of 
two modes, the absorber should first be tuned to the lower mode and 
then the damper value adjusted to optimally damp both modes. 

Figure 3 - 2 4  also can be interpreted from the point of view of 
"mistuning1' the absorber. The figure shows that the sensitivity of 
the absorber performance to tuning errors decreases as the absorber 
mass ratio increases. Additionally, the sensitivity to tuning 
errors is greater if the absorber is mistuned above the optimal 
frequency as opposed to below. 

Typically, the designer would attempt to size and locate the 
absorbers in such a way that the coupling between the modes was 
increased, thereby increasing the damping performance of a single 
absorber over many modes. However, in certain situations, it is 
possible that the maximization of coupling could result in reduced 
damping performance. Therefore, a fully-coupled analysis is 
necessary to analyze absorber locations for problems involving 
large amounts of coupling. The methods described in this section 
apply to uncoupled or lightly coupled modes, but can also be used 
to provide location and mass distribution input for the fully 
coupled parameter optimization. The application of modern control 
theory and parameter optimization techniques to the vibration 
absorber problem takes into account coupling effects, and is 
discussed in Section 4 .  Section 5 compares the results of the 
dynamics and controls techniques applied to two Space Station 
vibration damping cases, one uncoupled and the other highly 
coupled. 
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SECTION 4 

CONTROL THEORETIC APPROACH To ABSORBER DESIGN 

This section presents a control theoretic approach to 
vibration absorber design. The design process is formulated as a 
linear output feedback control problem via the development of a 
feedback control canonical form. The design variables are expressed 
as control gains, and the analytical techniques of feedback control 
theory, both classical and modern, are applied to absorber design. 
Although active control algorithms are used in the design process, 
the final design remains passive; i.e., we are not designing active 
systems. The constrained nature of the feedback gain matrix makes 
the application of established output feedback solution methods 
difficult; therefore, a nonlinear parameter optimization method is 
developed and applied to the output feedback formulation of the 
vibration damping problem. The optimization algorithm is applied 
to the simple 2-DOF system for comparison with known solutions to 
the 2-DOF problem. 

4.1 Conceptual Development 

The motivation for a new approach to absorber design stems 
from the complexity of the Large Space Structure (LSS) vibration 
damping problem. These structures have many closely spaced 
vibration modes and many candidate locations for placement of 
vibration absorbers. This multi-input problem (many different 
vibration sources) and multi-output problem (many different 
absorber locations), coupled with large numbers of vibration modes 
requiring damping, leads to a complex regime of damping problems 
that require new approaches to absorber design. 

The multi-input/multi-output (MIMO) nature of these problems 
lends itself to the analytical methods of multivariable feedback 
control theory. These feedback methods are well developed and an 
extensive body of knowledge and engineering experience exists 
concerning the effects of feedback gains on system performance, 
damping levels, and frequency response. The expression of the 
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absorber design process in feedback control format permits use of 
these analytical techniques and provides convenient methods to 
evaluate system performance in terms of accepted control system 
terms and concepts. Although some of these concepts may be 
unfamiliar to the structural dynamics community, their use in 
absorber design allows development of design procedures 
specifically tailored for LSS vibration absorbers that must cope 
with the new regime of complexity imposed by large space 
structures. 

The key concepts that allow application of feedback control 
techniques to absorber design are the placement of the design 
problem in a linear format, and the recasting of the combined 
structure-absorber dynamic equations in a feedback canonical form. 
This linear form is useful because most of the control-theoretic 
results apply to linear systems and the linear format greatly 
simplifies analysis and design. The feedback canonical form allows 
expression of the absorber parameters as controller gains and 
provides a convenient method for the evaluation of absorber 
performance. This formulation also provides needed visibility into 
the absorber design process. 

4.1.1 Linear Format 

Consider the development of a linear formulation. It is well 
known that absorber design becomes highly nonlinear when the 
calculation of all design parameters (mass, damper constant, spring 
constant and location) are performed under one optimization process 
[l-41. However the design process can be performed under a linear 
regime if recent research results are applied such that absorber 
masses and absorber locations are determined outside the primary 
design process. The logic supporting this procedure is as follows: 

Absorber Mass: The rationale for determination of absorber 
mass outside the main optimization process is based on research 
results that show that as the optimization proceeds, the optimum 
value of absorber mass tends to large values that uniformly 
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approach 50% of the main system mass [ 2 1 .  Thus unconstrained 
optimization procedures tend to large mass values that cannot be 
applied to LSS design. Typically the LSS requires that non 
structural mass be restricted to a small percentage of the total 
system mass. Because of the uniform nature of absorber mass 
variation as it approaches the optimum, imposition of mass 
constraints generally results in the optimization procedure riding 
the constraint boundaries in an attempt to drive the absorber mass 
toward higher values. The smoothness of the optimization curve and 
its known tendencies toward large mass values provide the rationale 
for setting the absorber mass at its maximum allowable value. The 
problem of optimum mass distribution between two or more absorbers 
is considered in Section 3.6. 

Absorber Placement: The problem of absorber placement can also 
be addressed outside the main optimization process: One simply 
determines the troublesome modes that require damping and locates 
absorbers at positions of maximum modal gain. This procedure is 
based on knowledge that absorber must experience velocity in order 
to function properly. Places of maximum velocity occur at station 
points where the eigenvector has maximum values. From a control 
perspective, one locates the absorbers at points of maximum modal 
gain and thus assures maximum excitation of the absorber. 

The removal of absorber mass and location from the primary 
design process leaves the parameters of damper value and spring 
constant to be determined. These parameters can be determined by 
feedback control algorithms. 

4.1.2 Control Canonical Form 

The control canonical form for absorber design is developed in 
a three step process. First the dynamic equations for a two degree 
of freedom absorber system are formulated in both scalar and matrix 
form. Second these equations are placed in block diagram form and 
the variable parameters are isolated as feedback gain matrices. 
And finally, block diagram reduction is employed to develop the 
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absorber canonical form. The development of this form rests on 
judicious handling of the coupling terms between the dynamic 
equations of the absorber and the damped structure, and the 
successful resolution of problems that result from single gain 
elements appearing in multiple feedback loops. 

Step 1. Equation Formulation: The dynamic equations for the 
absorber and the system may be formulated as shown in Figure 4-1. 
These equations take the form of coupled second-order differential 
equations. System I denotes the main system, or the structure to be 
damped. System I1 denotes the absorber dynamics for the coupled 
equations. The main system variables and parameters are denoted by 
the subscripts 1, and the absorber variables and parameters by the 
subscripts 2. The symbol, P, represents an external force applied 
to the system. 

Additional insight into the nature of the problem is gained if 
the combined system dynamics are expressed in matrix form as shown 
in Figure 4-1. The two second-order differential equations of 
Systems I and I1 are expressed as four first-order equations. 
States 1 and 2 are associated with System I, and states 3 and 4 are 
associated with System 11, the absorber. This decomposition 
emphasizes the coupling between the two systems: System 11, the 
absorber, drives System I via the Y2 vector. The isolation and 
careful handling of these coupling vectors and their corresponding 
matrices is a key concept for the development of the control 
canonical form. The entries of each coupling matrix involve k2 and 
c2 multiplied by an appropriate scalar. The significance of this 
symmetry becomes more pronounced as the development proceeds. 

Step 2. Block Diaqram Formulation: The system dynamics can 
be represented in block diagram form as shown in Figure 4-2. The 
blocks that contain (l/s) represent integrators. Four such 
integrators are present, one for each of the first-order dynamic 
equations. The subscripts are associated with parameters and 
variables as defined previously. 

Examination of the block diagram yields several important 
properties of the damper problem. First it is observed that each 
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spring constant, k2, is associated with a deflection and each 
damper constant, c2, is associated with a velocity. This structure 
suggests a well known feedback form (k2 + sc2) where, s ,  represents 
differentiation. This form is representative of output feedback 
systems having a position loop and a velocity loop. 

Additional examination of block diagram signal paths and 
connection matrices reveals a significant property: All connection 
elements and , feedback elements, with the exception of k, are 
identical. The absorber parameters, c2 and k2, form identical 
feedback structures for both System I and System 11. Similarly the 
feed-forward coupling terms associated with each system are 
identical. Although these parameters seem to be independent and 
appear in different system loops, in actuality they are the same 
parameter appearing simultaneously. This implies that parametric 
adjustment in one loop yields simultaneous adjustment in every loop 
containing that parameter. 

The multipath gain characteristics are emphasized by the 
generalized block diagram of Figure 4-3. This form demonstrates 
the multipath nature of the control problem. The control design 
gain, K, appears in two inner feedback loops, and forms the 
coupling matrix between the two systems. The outer feedback loop 
is positive in nature. Positive feedback loops are generally 
avoided in practice because of reduced stability margins that can 
cause system-wide instability. However, stability constraints are 
not a concern in this design process, for the entire system is 
guaranteed to remain stable as the passive nature of the absorber 
guarantees stability. The system dynamic equations are inherently 
stable for all physically realizable parameter values. 

Examination of Figure 4-3, with attention to the outer loop, 
shows that the gain appears in both the feed forward path and the 
feedback path. This implies that the gain will appear in the 
problem formulation as a squared quantity; thus, potential 
nonlinearity, has reentered the formulation. However, as shown in 
Step 3 ,  the positive outer loop when combined with Mason's block 
diagram reduction techniques removes the nonlinearity. 

I 
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Step 3 .  Eigenvalue Canonical Form Development: The formation 
of a canonical form that incorporates absorber effects on system 
eigenvalues requires determination of the system characteristic 
equation. This is accomplished by block diagram reduction as shown 
in Figure 4-4 .  P1 and P2 represent the transfer functions for the 
structure and absorber respectively with the minor feedback loop 
incorporated into the expression for the structure. The transfer 
functions from disturbance input to structural deflection (X1/P), 
and disturbance input to absorber deflecton (X2/P) are developed as 
shown. The intermediate steps involving P1 and P2 illustrate the 
effects of positive feedback on the outer loop. Substitution of 
the algebraic relations for P1 and P2 in the expressions for the 
transfer functions and simplifying yields the desired transfer 
functions in terms of G1, and G2. The denominator polynomial of 
either transfer function is the characteristic equation and 
contains the required information on system eigenvalues. This 
expression is linear in the gain K and may be placed in the block 
diagram form shown in Figure 4-5. 

This system has the structure of a simple output feedback 
control system entailing a single feedback loop, and may be used to 
synthesize system gains corresponding to absorber parameters. This 
feedback formulation provides insight to the ability of the 
absorber to affect system eigenvalues. It should be emphasized 
that G2, the transfer function associated with absorber, has the 
functional form 1/s2 and corresponds to the dynamics of the 
absorber mass without the spring and damper attached. The 
remaining dynamic elements of the absorber are associated with the 
feedback loop. The transfer function, G l i  is associated with the 
structure and has the functional form l/(s + wo2) and corresponds 
to a structural vibration mode. The total system may be viewed as 
a rigid body mode and a vibration mode that are coupled by an 
external feedback loop, K. 

Absorber Gain Constraints: One additional item requires 
discussion before proceeding to the control design process; namely, 
the absorber gain matrix is highly constrained, contains many zero 
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entries, and repeated elements. This matrix structure leads to a 
highly constrained output feedback control problem that requires 
the generalization of feedback control techniques before they can 
be applied to absorber design. Section 4.5 discusses the problem 
in detail. 

In summary, the simultaneous appearance of system gain 
elements in multiple loops generates a multipath control problem 
that severely limits design freedom. This limitation occurs 
because individual loops cannot be adjusted to meet independent 
performance specifications. With reference to Figure 4-3, a gain 
variation in one loop implies simultaneous variation in all loops. 
The multipath condition exists because the absorber parameters are 
bidirectional elements that transmit forces in two directions. The 
absorber parameters operate on the difference of two variables in 
the system dynamic equations: in the control domain, this implies 
multiple gain paths. This multiple gain path condition is removed 
from the formulation by block diagram reduction techniques during 
development of the root-canonical form thereby rendering the 
absorber design problem more amenable to control techniques. 

4.1.3 Absorber Root Locus 

The pole-zero constellation and associated root-locus plot are 
shown in Figure 4-6. The poles are indicated by x's and the zeros 
are indicated by 0's. The pole frequency at wo corresponds to the 
vibration mode of the structure with no absorber attached. A 

double pole occurs at the origin and corresponds to the absorber 
mass dynamics. The zeros occur as a result of absorber action and 
are located at 2 jwo/(l + p )  where p = M1/M2 is the ratio of the 
absorber mass to structural mass. A zero also occurs on the real 
axis at -K2/C2 where K2 is the absorber spring constant and C2 is 
the damper value. Zero placement strongly affects the locus 
behavior, because the closed-loop system poles tend to migrate 
toward the open-loop system zeros. 
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The root locus exhibits the general properties shown wherein 
the poles at the origin move toward zeros on the imaginary axis 
located at wo/(l+p), and the poles on the imaginary axis move 
toward the real axis. This pattern makes it difficult for one 
absorber to provide damping for more than one mode. One way to 
alleviate this situation would be to make the absorber active such 
that the zero on the real axis would become a complex pair that had 
an imaginary part approximately equal to the frequency of the modal 
cluster that required damping. The presence of the complex zero 
would draw modes of the cluster toward it and thus provide damping. 

4 . 2  Root-Locus Investigation of Absorber Design 

This section employs the root-locus to analyze the absorber 
design process. We study the classical min-max solutions of 
Timoshenko [lo] and Den Hartog [ll], and the pole placement 
procedures employed by Crawley [3-41. The effect of zero location 
(damper strength to spring constant ratio) on system performance is 
also investigated. These studies provide new insight into absorber 
design. 

Illustrative Example: The design example consists of the two 
degree of freedom system shown in Figure 4 - 7 .  The main system 
parameters are delineated by the subscript, "s"  , and the absorber 
parameters are delineated by the subscript, "A" . The structural 
parameters (main system) have been normalized to provide a 
structural frequency of one radian/sec. 

The canonical system that is analyzed with root locus 
techniques has the structure shown in Figure 4 - 7 .  In order to 
perform a standard gain variation study, the absorber parameters 
are lumped on the summer output and form the block indicated by 
[l + (cA/kA)s1. The spring constraint, kA, appears as a variable 
gain in a separate block. It is this gain that functions as the 
variable parameter for our root-locus studies. This procedure is 
equivalent to holding the ratio of cA/kA constant; i.e., fixed zero 
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location, and increasing both the spring constant and damper 
strength by the identical multiplicative factors. 

From a parameter optimization perspective, this root-locus 
procedure is equivalent to searching the contours of a hypothetical 
performance criterion along fixed rays. Figure 4-8 illustrates 
this concept in which the fixed rays emanating from the cA - kA 
origin represent lines of search. These straight lines are 
equivalent to fixed zero locations on the root locus. 

Figure 4-9 depicts the root locus for the illustrative 
example. The form of the locus corresponds to the general pattern 
previously shown in Figure 4-6. As the locus is symmetric about 
the real axis, the locus of the lower half-plane is a mirror image 
of that of the upper half-plane; accordingly, only the upper 
half-plane is shown. The area enclosed by the box contains the 
locus that corresponds to the absorber mass and emanates from the 
double pole at the origin. This region corresponds to large 
absorber/system interaction and is of design interest. The 
remaining portion of the locus leads to high gain designs that 
ultimately result in absorber lock-up. 

Figure 4-10 depicts the expanded region of locus behavior and 
presents the results of a parametric study on zero location. 
Recall that zero location is adjusted by variation of the spring 
constant and relative damper strength. The zero is varied from 
-20.0 to -2.90 along the real axis. These locations are chosen to 
br?.cket the mini-max and pole-placement solutions. 

The parametric study provides a general overview of the locus 
behavior. Each plot has two branches. The upper branch 
corresponds to the structural mode and proceeds from the imaginary 
axis with an initial value of 1.0 radian/sec. The lower branch 
corresponds to the absorber and proceeds from the imaginary axis 
with an initial value of 0.0 radians/sec. The direction of travel 
for each branch as the gain increases is as shown. Both roots move 
into the left half-plane as the gain increases, thus providing 
increased damping. However an additional increase in gain causes 
one of the branches to return to imaginary axis thereby reducing 
damping. The placement of the zero (kA/cA ratio) determines which 
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branch, that associated with structure or that associated with the 
absorber, returns to the imaginary axis. The zero position 
strongly influences the left half-plane behavior of each branch. 
This determines the amount of interaction between the two modes and 
the ultimate achievable damping for each mode. A good design 
requires interaction between the two modes such that energy is 
transferred to the absorber and dissipated across the damping 
element; i.e., each mode receives a moderate amount of damping. 
Different optimality criteria achieve these conditions in slightly 
different manners. 

We next consider each plot of Figure 4-10 in detail and 
proceed clockwise through the charts. Recall that movement of the 
zero toward the imaginary axis corresponds to increasing the damper 
strength relative to the spring constraint. 

First consider the chart depicting the minimax solution which 
has a zero at - 5 . 6 0 .  The circles indicate roots obtained by 
application of the classical turning laws [lo, 111. This solution 
provides maximum interaction between the two modes and leads to the 
beating phenomenon shown in Figure 4-11. The effect of the zero at 
this point is to strongly draw the loci into the left-hand plane 
and thereby produce increased damping. We note that the loci 
approach each other, but do not intersect. 

Next consider the pole placement solution which has a zero at 
- 3 . 5 .  Movement of the zero toward the imaginary axis has caused 
the loci to move further into the left-hand plane and to coalesce. 
The optimal solution is indicated by the circle enclosing the 
double pole as shown. The corresponding time response is shown in 
Figure 4-11. When compared with the pole placement response, we 
note the absence of the beating phenomenon; i.e., the response 
decays uniformly to zero. 

The next plot has the zero placed at -2.90. A zero this close 
to the imaginary axis influences that branch of the locus 
associated with the absorber mass pulling it strongly into the 
left-hand plane. However, the influence on the structural mode is 
diminished. The root associated with this mode merely loops back 
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onto itself returning to the imaginary axis. Little interaction 
occurs between the two modes and performance decreases. 

The final plot has the zero placed an extreme distance from 
the imaginary axis at -20.0; i.e., we have increased the spring 
constant relative to the damper strength. The zero at this point 
has reduced influence over the locus branches. Damping and 
interaction are reduced. 

In summary, the root locus is a convenient tool for relating 
transient response to structural parameters. Movement of the 
system zero corresponds to adjustment of the spring constant/damper 
strength ratio. The modal beating effect obtained from classical 
tuning laws can be analyzed in terms of locus interaction. The 
method is best applied to two degree of freedom systems that can be 
analyzed as single input single output (SISO) systems. Subsequent 
sections deal with the multi-degree of freedom/multi-absorber 
problem. 

4.3 Control Canonical Form for a Finite Element Model 

The control canonical form presented in Section 4.1 is 
developed for a finite element structural model, in preparation for 
the application of modern control techniques to the multi-DOF, 
multi-absorber control problem. A simple 2-DOF mass-spring system 
is analyzed first with an approach which is more direct than that 
of Section 4.1. The new approach develops the nomenclature for the 
generalization to the finite element model. 

4.3.1 Analysis of the Simple Mass-Spring System 

The mass-spring system is shown in Fig. 4-12. The mass, Ms, 
and spring constant, ks, define the structure, and MA, kA, and cA 
define the absorber. The equations of motion for the system are 
also included in Fig. 4-12. 

The control canonical form is obtained by considering the 
negative of the absorber relative displacement, 6 , as the output 
variable, and the structure inertial displacement and absorber 
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s + kS/Ms 

Figure 4-13. Control Canonical Form - Simple Mass-Spring System. 
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negative inertial displacement, x and 5' , as the state variables. 
The transformed equations are shown in Fig. 4-12. Note that the 
transformed equations have essentially decoupled the structure and 
absorber systems. The control force, applied to both systems, is a 
function of the relative displacement, - 6  , and velocity, -6 . 

The control canonical form block diagram can be written 
immediately from the transformed equations in Fig. 4-12, as shown 
in Fig. 4-13. The input to the structure-absorber system is the 
absorber control force, u, and the output is the negative of the 
absorber relative displacement, 6 . 

4.3.2 Generalization to a Multi-DOF Structure. 

The control canonical form for a simple mass-spring system is 
now extended to the describe the finite element model of a 
structure with multiple absorbers, Fig. 4-14. 

The finite element model (FEM) for a large space structure 
(LSS) is described by 

M Z + C g + K z = R _  (4-1) 

where M, C, and K are the mass, damping, and stiffness matrices, 
respectively, E is an external force vector, and E is the vector 
describing each of the 6 degrees of freedom for all the FEM nodes 
of the structure. 

Eq. (4-1) is transformed to an uncoupled set of differential 
equations in terms of the natural modes of vibration of the LSS. 
The transformation is accomplished with a modal transformation 
matrix \Y , such that 

Y x =  vs 
The uncoupled equations of motion become 

6 + 2 R Z : + R 2 q =  Y T R, 
N N N 

where, 

R2 = %. oi2 x 
2RZ = $ 2 ai Ci 'J\ 

(4-2a) 

(4-2b) 

(4-2~) 

(4-2d) 
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The ri are the 
modal damping ratios. The columns of Y are the eigenvectors of 
Eq. (4-1). 

The objective of the canonical form generalization is the 
attachment of the absorber dynamics to the FEM of the structure, 
and expression of the combined system in a form which is identical 
to that of the spring-mass system, Fig. 4-13. To simplify the 
formulation, each absorber is restricted to motion along a single 
degree of freedom, be it a linear or angular displacement. The 
absorber control force is expressed as a linear function of 
relative displacement and velocity, and it is added as an external 

ai are the natural frequencies of the LSS, and the 

force to the right hand side of Eqs. (4-1) and (4-2b). 
The absorbers are placed at nodes of the structure such that 

absorber motion is parallel to one of the 6 degrees of freedom at a 
node. The structure displacement corresponding to each absorber is 
described by 

rn 

xi = -1 +.' 2, i=1, 2, 3 ,..., L (4-3) 

where the qhiT are rows of corresponding to the specific xi. 
A consise expression for the absorber locations, xi, in the 

state vector, 5 ,  is obtained by rearrangement of the modal 
transformation matrix such that 

I Y =  (4-4a) 

Then, 
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xT = [ x1 ... XL I 1 xL+l ... XN I = 1. EA T I  I zSR T ]  
N 

where, 

(4-4b) 

(4-4c) 

Likewise, the force on the structure by the absorbers is 
partitioned so that 

f =  [ ?E-] (4-5) 

The addition of the absorber force to the structure dynamics, Eqs. 
(4-2), yields 

The dynamics of the absorbers are expressed as 
.* 

where MA = 5 mi$, i = 1,. . . , L is the matrix of absorber masses, 
and 5 is the vector of absorber inertial displacements. The sign 
convention for 6 is as described in Section 4.3.1. 

The absorber force is expressed as a linear function of the 
relative absorber displacement and velocity. The relative 
displacement for a specific absorber is given by - (  ti + xi 1,  Fig. 
4-14,, and the absorber force is given by 

hr 

N 

fAi = -  ki ( ci + x i  1 - ci ( Ci + X i  1 (4-8a) 

The force vector for all the absorbers is expressed with the aid of 
Eq. (4-4b), 

(4-8b) 
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where KA = % ki J. and CA = $ ci 1, i=1,2 ,..., L. 
The structure-absorber equations of motion become 

r 0 -  

YT 
cy u +  N 

0 

0 - - 

+ 2RZ 4 + R2 q = yT R + VAT 
N N 'v cy 

cu R (4-11a) 

N i? -1 = MA 5 

(4-9a) 

(4-9b) 

(4-9c) 

(4-9d) 

For control analysis, E q s .  (4-9) are converted to first order form 
with the definition, 

n =  
N 

E q s .  (4-9) become 

n =  
cy 

- - 

r 

0 I 0 

-R2 -2RZ 0 

0 0 0 

0 0 0 

A 2  + B g  + 

0 

0 

I 

0 

E R  
N 

O l  

'1 

(4-10) 

cy n = C z  (4-llb) 
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u =  
N (4-llc) 

The LSS-absorber system is now expressed in the generalized 
output feedback canonical form by Eqs. (4-11). A control block 
diagram for Eqs. (4-11) is presented in Fig 4-15. 

4.4 Optimal Output Feedback Formulation 

The LSS-absorber system is described by Eqs. (4-111, where the 
absorber spring and damper constants appear as the output feedback 
gains, KA and CA. The feedback gain matrix, 

(4-12) 

must be chosen so that the response of the LSS to external 
disturbances is optimized in some sense. 

The goal of the optimization problem is to minimize some 
perfomance index which penalizes the response - displacement, 
velocity, or acceleration. The most common performance index 
applied in linear optimal 
regulator cost functional, 

The positive semi-definite 

control theory 

%T R u h) ) dt 

is the linear quadratic 

(4-13) 

matrix Q and positive definite matrix R 
describe the weighting of the state and control variables in the 
performance index. 

The output feedback form of the performance index is obtained 
with substitution of Eqs. (4-llc) and (4-12) for u, into Eq. (4-13): 

T T  
( nT [ Q + C F R F C  I n ) dt J =s, hr hr 

(4-14) 

The optimal output feedback problem to be solved is 
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minimize J with respect to F, subject to: 

I 

(4-15a) 

(4-15b) 

where the matrices A, B and C are defined in Eqs. (4-11). 

4.5 Modern Control Techniques 

The linear quadratic regulator problem has been studied 
extensively, and an exact solution is available for the complete 
state feedback problem [15]. A sub-optimal solution is also 
available f o r  the output feedback regulator problem [16]. 

The performance index, Eq. (4-141, can be expressed in terms 
of an initial condition vector, and the Lyapunov matrix, P, which 
is the solution of the Lyapunov equation, 

(4-16) T T  (A-BFC)~ P + P (A-BFC) + ( Q + c F RFC = o 

Then, 

rn 
(4-17) 

where % is the vector of initial conditions. Therefore the 
performance index, J is an explicit function of the initial state 
vector. 

To eliminate explicit initial condition dependence, J can be 
minimized over the set of all possible initial conditions. The 
performance index becomes the expectation of the cost over a 
uniformly distributed set of initial conditions [171, 

J = E {  
rn 

P I  (4-18) 

where tr[l denotes the trace of a matrix. Eq. (4-18) represents an 
average cost over a set of uniformly distributed initial conditions 
in state space [17], and provides an upper bound for the 
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performance cost resulting from any specific initial condition 
vector. 

Solution techniques for the optimal output feedback problem 
with Eq. (4-18) as the performance index have been examined in the 
literature [16 - 191. A sub-optimal solution is presented by Kosut 
[16], which minimizes the control difference between an optimal 
state feedback controller, and the equivalent output feedback 
controller. However, when the observation matrix, C, is not of full 
rank, as is often the case with a reduced order finite element 
model, then the solution for the output feedback gain matrix is not 
unique. In fact, a parametric family of gain matrices is possible 
[201 

Further complications arise from the constrained structure of 
the gain matrix, F: 

F =  KA 1 

O I  
0 ... I c1 ... 0 0 

1 kl 

. . c2 0 k2 I O  I ... 0 ... 0 
I 
I . . . I I 
I 
I 
I 

cL J 0 ... kL I 0 ... 0 0 

(4-19) 

In general, an optimal output feedback solution such as Kosut's 
will return a fully populated matrix. Physically, this feedback 
structure implies that there exists a set of actuators, and a set 
of sensors such that each actuator obtains information from all the 
sensors. However, the LSS-absorber problem is similar to a local 
feedback control problem, in which each actuator only obtains 
information from a colocated sensor. The LSS problem differs from 
the local feedback control problem by the fact that the actuator 
force is applied to both the sensor location on the structure, and 
the corresponding absorber mass. This leads to the coupled control 
problem previously discussed in Sec. 4.1. 
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4.6 Parameter Optimization 

The optimal output feedback control problem stated by Eqs. 
(4-1S), (4-16), and (4-18) can be approached with parameter 
optimization techniques. Numerical optimization algorithms, such as 
steepest descent or quasi-Newton, vary the elements of the gain 
matrix, F, until a minimum of the performance index is reached. 
Only the non-zero elements of F are varied, therefore the result of 
the optimization is the optimal constrained feedback gain matrix as 
given in Eq. (4-19). 

4.6.1 Statement of the Parameter Optimization Problem 

The parameter optimization problem is obtained from Eqs. 
(4-15), (4-16), and (4-18): 

subject to: 

P + P A. + Q = 0 
AO 

A- = A - BFC 

( 4 - 2 0 )  

Note that the explicit weight, R, on the control vector is set to 
zero, since the control effort is implicitly constrained by the 
absorber dynamics which are included in the closed loop plant 
matrix, Ao. The implicit constraint on the control effort is a 
result of the limitations placed on the control force by the finite 
absorber mass and the absorber dynamics. 

The gradient of J with respect to components of F for the 
problem stated by Eqs. ( 4 - 2 0 )  can be computed through the solution 
of an additional Lyapunov equation for AoT [17,211, 

A, L + L A. T + I = O .  
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where col0 is a column vector composed of all the elements of the 
gradient matrix which correspond to non-zero elements of F (e.g., 
Eq, 4-19). Likewise, 

= col{ F } (4-23 1 

is a vector composed of the spring and damper constants for all the 
absorbers. 

4.6.2 Quasi-Newton Method Description 

A quasi-Newton method is chosen to perform the optimization. 
The quasi-Newton method builds an approximate local quadratic model 
of the objective function, and proceeds to find the minimum of the 
model. The method is applicable when an analytic or semi-analytic 
gradient is available for the objective function, and offers faster 
convergence than a steepest descent method. 

As with most Newton-type optimization methods, the search for 
the minimum is performed in two steps: (1) choose a search 
direction, and (2) find the minimum of the function along the 
search direction. The choice of search direction depends on the 
method used. For a quasi-Newton method, the search direction is 
obtained from second derivative information. Consider a 
hypothetical function W with gradient DW and Hessian (second 
derivative matrix) D2W. Then, a local quadratic approximation for W 
is 

m 

+ DW(&) 6x N + 1/2 6$ D2W(ko) (4-24) 

A necessary condition for a minimum of W is DW(g)=O. The 65 which 
satisfies this condition is 

( 4 - 2 5 )  

where 6~ is the new search direction. 
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Once the search direction is computed, a univariate 
minimization, often called a line search, is performed to find a 
minimum of the objective function along the search direction. 

The Hessian is approximated from previous function values and 
gradients. At the first iteration the Hessian is the identity 
matrix. At subsequent iterations, the Hessian is updated according 
to the formula given in Ref. [211. When the Hessian update becomes 
ill-conditioned a restart is performed, and the Hessian is reset to 
the identity matrix. 

A simplified flow diagram for the quasi-Newton algorithm is 
presented in Fig. 4-16. 

4.6.3 Convergence Criteria 

The convergence criteria for the optimization algorithm 
regulate the accuracy of the solution. The necessary condition for 
a minimum is 

VJ = 0 (4-26) 

The imposition of this condition alone, however, may place 
unreasonable convergence requirements on the algorithm. More 
practical criteria are placed on the change of the performance 
index, and the spring and damper constants, over consecutive 
iterations. When the relative difference of the values over an 
iteration is smaller than specified tolerances, the optimization is 
stopped. Thus the algorithm is prevented from attempting to satisfy 
Eq. (4-26) to some tolerance, when the change in spring and damper 
constants is insignificant for consecutive iterations. 

The implemented convergence criteria are 

where E ~ ,  E ~ ,  c 3  are specified tolerances. 
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I 4.6.4 Example Problem 

The parameter optimization algorithm is applied to the simple 
mass-spring system of Fig. 4-12. The 

I Ms = 1 lb., ks = 1 lb/in, MA = 0.02 lb. 
The system 

r l =  
N 

u = -  
N 

equations are 

0 1 0 0  
- 1 0 0 0  
0 0 0 1  
0 0 0 0  

I 

k a '  ca b 
id 

0 
1 

with cost weighting matrix, 

n +  
0 
1 
0 

50 

1 

Q =  

The structural displacement alone is 
weighting matrix. 

system parameters are 

2 

(4-27a) 

(4-27b) 

(4-27~) 

penalized in the cost 

A 3-dimensional plot of J vs. ka and ca is presented in Fig. 
4-17. The optimization algorithm consistently converges to the 
values 

ka = 0.975 lb/in 
c = 0.139 lb-sec/in a 

for various initial estimates of ka and ca. 
The algorithm solution is compared to the steady state minimax 

and pole placement solutions (Sec. 3.2) in Fig. 4-18, along with 
the corresponding transient responses to an impulse. The steady 
state minimax response exhibits a smaller amplitude for the second 
beat (between 40 and 80 seconds) than the parameter optimization 
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response. However, the parameter optimization response decays to 
zero amplitude in 35 sec. as compared to 40 sec. for the steady 
state minimax response. The performance difference between the 
parameter optimization and steady state minimax solutions is linked 
to the structure of the performance index for the parameter 
optimization, which is discussed in the next section. 

4.6.5 comments on the Performance Index 

t 
The behavior of the optimization on the sample problem, and 

also the space station application problems in Section 5, 
highlights an implicit constraint imposed by the performance index, 

= tr[ P I  (4-30) 

T . T  T 'T where, %T = [ NO & I. As discussed in Section 4.5, J is 
an upper bound for the performance cost resulting from any one 
specific initial condition vector, say an impulse at a specific 
location on the structure. 

The Lyapunov matrix, P can be sectioned so that 

P =  

Then , 

(4-31) 

sE' + (cross-terms in P 

J = tr[ P 3 + tr[ Pt ] = J1 t J2 9: 
(4-32b) 
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The component J1 of J represents the cost associated with a 
disturbance applied directly to the structure. The component J2 of 
J represents the cost associated with a disturbance applied to the 
absorber masses. A disturbance applied to an absorber mass causes 
absorber motion, and structural excitation. Even though the 
absorber motion may not be penalized in the cost weighting matrix, 
Q, the structural excitation will contribute to the perfomance cost 
J2. This contribution to J2 is significant relative to J1 when the 
absorber disturbance excites natural modes of the 
structure-absorber system which are significant components of the 
structural response. 

The energy transmission property of the absorbers may cause 
mis-tuning, when the transmitted energy excites significant modes 
of the structure. The removal of this implicit constraint on the 
performance index, J, and the generalization of the tuning 
algorithm presents an interesting topic for future study. 

4.7 Uncoupled Dynamic Optimization vs. Parameter Optimization. 

The uncoupled dynamic optimization formulation provides a 
simple method of computation of the optimal parameters for several 
absorbers, by tuning each absorber to a specific mode of vibration. 
Embedded in the formulation (Sec. 3 . 6 )  is the computation of the 
optimal mass distribution among the absorbers. 

The major obstacle, however, which limits the use of the 
uncoupled dynamic optimization technique on a multi-mode structure 
with multiple absorbers is the cross-coupling between modes through 
the absorbers; i.e., the control force of each absorber affects 
more than one mode, and the displacement and velocity input to each 
absorber includes more than one mode. The cross-coupling effect is 
depicted in Fig 4-19, in which a two-mode FEM with two absorbers is 
shown in control canonical form. Each absorber is assumed to be 
tuned to one of the modes. The dash lined boxes isolate the 2 
absorber-mode systems, while the double-line paths indicate the 
cross-coupling between mode-absorber systems. The influence 
coefficients, $ij, relate the modal amplitudes to physical 
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the uncoupled dynamic optimization yields the optimal mass 
distribution and a nearly optimal response. This is the basic 
assumption of the uncoupled dynamic optimization technique. The 

89 

cross-coupling to the extent allowed by the reduced order finite 
element model. 

A comparison of the uncoupled dynamic optimization and the 
parameter optimization methods of computing the optimal absorber 
parameters is performed in the next section for several space 
station application problems. 
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SECTION 5 
SPACE STATION APPLICATIONS 

The optimization techniques described in the previous sections 
are applied to example vibration damping problems on the NASA dual 
keel configuration Space Station. Two example cases are considered, 
which evaluate the capabilities of the uncoupled dynamic 
optimization and the parameter optimization algorithms: (1) micro-g 
acceleration response at the lab module, and (2) pointing response 
at a location on the Earth-viewing (lower) payload boom. The 
disturbance input for both cases is a unit impulse at the 
habitation module. The force input at this location simulates 
either a shuttle docking, or crew motion disturbance, depending on 
the strength of the impulse. The inherent structural damping is 
assumed to be 0.5%. 

In order to examine the performance of the optimization 
techniques on multi-absorber problems, two absorbers are employed 
in each of the example problems. The application of two absorbers 
facilitates the interpretation and expression of the results using 
two-dimensional plots, and simplifies the interpretation of the 
dynamic interactions between structure and absorbers. 

The results of the example cases provide insight into the 
optimization techniques, and also quantify some of absorber design 
parameters, such as spring constants, damper constants and absorber 
strokes. 

5.1 Space Station Finite Element Model 

The Space Station finite element model (FEM) describes the 
dynamics of the IOC version of the Space Station during the phase B 
evolution as of January, 1986 (Fig. 5-la). The model is 
characterized by a 5M erectable truss in the dual keel 
configuration with the modules placed above the transverse boom. It 
should be noted that at this writing, a later version of the IOC 
Space Station configuration has been developed which includes a 
combination of solar voltaic and solar dynamic power generators on 
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the transverse boom, and a slightly different module arrangement. 
Consequently, the model used in the present study does not reflect 
the latest space station configuration, and the cases studied 
should be treated as examples only. For the same reason, the 
construction of the FEM model is not presented in great detail. 

The FEM model, shown in Fig. 5-2 without payloads and 
servicing bays for clarity, employs equivalent beam 
reperesentations of the 5M erectable truss. The EAL/SPAR finite 
element code is used. Table 5-1 lists the properties of the model. 

Dynamic analysis of the model yields a large number of 
free-free modes. Primary structural modes are selected by 
examination of the modal component strain energy rankings and 
animated mode shape displays. Fig. 5-2 shows side views of the 
primary modes selected, from a perspective of looking down the 
Y-axis. 

5.2 The Acceleration Response Problem 

The stringent micro-g level requirement on the accelerations 
at the lab module is one of the design drivers which prompted the 
configuration change from the power tower to the dual keel 
configuration of the Space Station. The absorber optimization 
algorithms are applied to minimize the transient lab module 
acceleration response in the 2-direction (Fig. 5-lb). An arbitrary 
value for the total absorber mass budget of 1 snail ( 3 8 6  lb.) is 
assumed. 

The spectral composition of the lab module acceleration 
response is shown in Fig. 5-3. Modes 27, 28, 31 and 40 contribute 
most significantly to the response. The actual open loop impulse 
response is shown in Fig. 5-6a. 

The two absorbers are located so that the influence of each 
absorber on a particular mode is maximized (i.e., the absorber is 
placed at a maximum of the mode shape). The location of the 
absorbers is shown in Fig. 5-lb. The chosen locations allow both 
absorbers to influence modes 28, 31, and 40 significantly. 
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TABLE 5.1. CHARACTERISTICS OF 5M DUAL KEEL FEM MODEL 

WEIGHT (LBS) : 675,791 

INERTIAS (SLUG-FT2) : 

In= 2.253+08 

IyY= 6.823+07 

I Z Z =  1.743+08 

5M ERECTABLE TRUSS 

E1 (LB-IN2) z 5 .OE+11 

G J  (LB-INP) 1.2E+ll 
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FORCING DOF * 1243 OBSERVATION DOF = 1269 

I 
31 

t 27 I 
I I I I I 1 I I 1 1 1  

0.05 0.10 0 . 1 5  0.20 0 . 2 5  0.30 0 .35  0 .40  0 . 4 5  0 . 5 0  0 . 5 5  0 . 6 0  0 . 6 5  

FREQUENCY (Hz)  

MODES INCLUDED: MODE FREQUENCY (Hz)  

27 0 .4387  
28 0.461 8 
29 0.5052 
30 0 .51  75 
31 0.5263 
40 0 .5656  

Figure 5-3. Spectral Composition o f  Lab Module Z-acceleration Impulse 
Response. 
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The techniques described in Sec. 3.7 are employed to examine 
the degree of coupling introduced through the absorbers for the 
acceleration response problem. The peff matrix exhibits a high 
degree of spatial coupling, as indicated by the relative magnitudes 
between the diagonal and non-diagonal elements, Fig. 5-4a. The net 
effect of the spatial and frequency coupling is depicted in Fig. 
5-4c, in which the off-diagonal elements of peff are plotted 
against the modal frequency ratio. The placement of the plotted 
points for the acceleration response problem indicates that 
cross-coupling effects are strong. 

5.2.1 Uncoupled Dynamic Optimization Results 

For the uncoupled dynamic optimization, an absorber is tuned 
to each of the dominant modes, 28 and 31. The results of the mass 
optimization (Eqs. 3-37 through 3-40) are examined graphically in 
Fig. 5-5, in which the cost J (area under the acceleration response 
curve) is plotted as a function of the ratio of the absorber mass 
on mode 28 to the modal mass of mode 28. The optimal mass ratio for 
the absorber tuned to mode 28 is chosen at the minimum of the curve 
(Fig. 5-5). The remainder of the 386 lb mass budget is applied to 
the absorber tuned to mode 31. The two curves in Fig 5-5 illustrate 
the small error introduced when the area under the response curve 
is computed by summation of the areas under the individual modal 
responses, rather than computation of the area under the actual 
response (modes combined) curve. Both curves have a minimum at 
p, = .03, which agrees with the value obtained from numerical 
solution techniques (Eq. 3-39). The corresponding value of p2, 
applied to mode 31, is 0.031. 

Given the absorber mass ratios, the optimal absorber spring 
and damper constants are computed using the classical steady state 
tuning laws (Eqs. 3-4 through 3-5e). The computed parameters are 
listed in Table 5-2. 

The acceleration response with the uncoupled dynamic 
optimization solution is shown in Fig. 5-6c. The response curve 
includes all the primary station modes listed in Fig. 5-3. 
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SPRING DAMPER 
ABSORBER ALGORITHM MASS CONSTANT CONSTANT 

( LBS 1 (LB/IN) (LB/IN-SEC) 

1 

UNCOUPLED 
OPT. 145 2.98 0.225 

PARAMETER 
OPT. 145 0.411 0.00224 

UNCOUPLED 
OPT. 241 6.43 0.431 

2 
PARAMETER 
OPT. 241 5.01 1.019 

- 

Table 5-2. Absorber Parameters for Acceleration Response 
Problem. 
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Figure 5-6* Transient Response For Lab Module Z-Acceleration. 
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5.2.2 Parameter Optimization Results 

The parameter optimization algorithm is applied to a reduced 
order finite element model of the dual keel space station, which 
includes the primary vibration modes listed in Fig. 5-3. The cost 
weighting matrix (Eq. 4-13) penalizes the acceleration response 
only, in the lab module 2-direction. The dynamic optimization 
solution (Sec. 5.2.1) provides the absorber masses, and the initial 
guess for the absorber spring and damper constants. 

The parameter optimization solution for the spring and damper 
constants is listed in Table 5-2. The closed loop frequencies and 
damping are depicted in Fig. 5-7, in which the frequency shift is 
highlighted through comparison with the open loop frequencies. The 
acceleration impulse response is plotted in Fig. 5-6b. 

5.2.3 Acceleration Response Case - Discussion 

The impulse response results obtained with the parameter 
optimization and uncoupled dynamic optimization solutions for 
absorber tuning show the significant amount of damping which can be 
introduced into the structure by tuned-mass dampers (Figs. 5-6b and 
c). Both solutions yield a good impulse transient response, 
although the parameter optimization solution offers a slightly 
better response than the uncoupled optimization solution. 

The frequency content of the impulse responses, Figs. 5-6a, b, 
and c, is obtained with Fast Fourier Transform (FFT) techniques. 
The FFT of the impulse responses for the parameter and uncoupled 
optimization solutions is compared to the open loop response FFT in 
Fig. 5-8. Both solutions suppress the peak at 0.46 Hz. (near mode 
281, but the uncoupled optimization introduces a significant peak 
near 0.5 Hz which yields a significant contribution to the impulse 
response. 

The damping ratios for the parameter optimization solution are 
listed in Fig. 5-7, which also illustrates the frequency shift 
between the open and closed loop systems caused by the attachment 
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DAMPING (%) 0.28 0 . 5 0  12.93 10.38 0.62 0.50 4 . 7 5  3.97 
FREQUENCY (HZ 

OPEN LOOP 
MODES 

27 2 8  29 30 31 40 

Figure 5-7. Damping Ratios and Closed Loop Frequencies for Parameter 
Optimization Solution. 
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of the absorbers. Approximately 10% damping is introduced near 
modes 27 and 28, and approximately 4% near modes 31 and 40. 

An interesting feature shown in Fig. 5-7  is the relatively low 
closed loop frequency at 0.166 Hz, with 0.28% damping - which is 
less than the 0.5% inherent structural damping! Examination of the 
absorber parameters for the parameter optimization solution, Table 
5-2,  reveals that absorber 1 is tuned to very small spring and 
damper constants. Normally it is difficult to attribute closed loop 
frequencies to absorbers and structure specifically. However, in 
this case it is clear that the mode at 0.166 Hz is a direct result 
of absorber 1, due to the small spring constant which leads to low 
vibration frequency for the absorber, and the small damping 
constant. 

The parameter optimization algorithm effectively tunes 
absorber 1 such that it does not affect the structure in the 
frequency domain of interest (i.e. modes 28 to 40). This behavior 
indicates possible interference between the absorbers which is 
allowed by the cross-coupling between absorber locations. 

Since absorber 1 is detuned, its allocated mass is inactive. 
Therefore, it is reasonable to expect that better performance can 
be obtained by shifting the inactive mass to absorber 2 which 
provides a l l  of the damping. However, additional test cases in 
which the mass distribution among the absorbers is varied do not 
lead to noticeable changes in the response, even when the total 
mass budget is allocated to absorber 2. A plausible interpretation 
of these results is that the total mass budget falls in a region 
where the performance cost is insensitive to total absorber mass. 
This idea is illustrated for a hypothetical problem in Fig. 5-9. 

Further examination of the acceleration response problem with 
a reduced mass budget ( 7 7 . 2  lbs) verifies the aforementioned 
hypothesis. Variation of the performance index, J, with the mass 
distribution is shown in Fig. 5-10 for the reduced mass budget 
problem. The minimum cost is obtained when all of the mass budget 
is allocated to absorber 2. The parameter optimization algorithm 
detunes absorber 1 for mass distributions of approximately 30 to 
65%. Since the mass of absorber 1 in that region is inactive, the 

1 0 6  



X 
Q) 
U 
C 

Q) 
0 
t 
rd 

0 rc 
L - 

U 

Satura t ion  Region 
- 

Satura t ion  Region 

Tota l  Absorber Mass Budget 

F igure  5-9. Hypothet ica l  Curve o f  Performance Index vs. To ta l  Absorber 
Mass Budget. 

960 

940 

920 

x 900 

880 

860 

840 

820 

800 

790 

W 
-0 
t 

Q) 
V 
t 

L 
0 

Q) 
P- 

0 10 20 30 40 50 60 70 80 90 100 

Absorber 1 Mass (% o f  t o t a l  mass budget) 

F igure  5-10. Performance Index vs. Absorber Mass D i s t r i b u t i o n ;  
Acce le ra t ion  Response Problem With Reduced Mass Budget. 

107 



* * *  OPEN LOOP - ABSORBER 1 ONLY 
37.5 % 
60 % 

-.- -- 
-- - ABSORBER 2 ONLY 

0 5 10 15 20 25 30 35 40 45 50 
T IME (SECONDS) 

__ Figure 5-11. Transient Response Comparison f o r  Var ia t ions i n  Absorber Mass 
D i  s t r i  bu t  i on. 

108 

I - 



cost curve shows the sensitivity of performance cost to the 
equivalent total absorber mass. 

As the mass of absorber 1 increased to values greater than 65% 
of the total mass budget, the absorber becomes more important and 
absorber 2 is now gradually detuned. The performance cost decreases 
as absorber 1 takes control, and absorber 2 becomes ineffective. 
The performance cost of absorber 1 alone (at 100% in Fig 5-10) is 
greater than the performance cost of absorber 2 alone (at 0% in Fig 
5-10) because of the different locations of the absorbers. 

The envelopes of the response curves for the cases of 0, 37, 
60, and 100% mass for absorber 1 are compared in Fig. 5-11 for 
physical evaluation of the performance cost differences depicted in 
Fig 5-10. 

5.3 Payload Pointing Problem 

Payloads and experiments mounted on the upper and lower booms 
may have stringent pointing requirements. To study the application 
of absorbers to pointing problems involving primary structural 
modes, the pitch rotation (rotation about the Y-axis) near the 
center of the Earth-pointing payload boom (Fig. 5-lb) is chosen as 
an example. Due to the large modal masses of the major system 
modes, a total absorber mass budget of 6 snails (2316 lbs.) is 
assumed. 

The spectral composition of the pitch response is shown in 
Fig. 5-12. The corresponding open loop impulse response is shown in 
Fig. 5-13a. The most significant contribution to the response is by 
mode 25 at 0.2661 Hz. The next most significant mode is 31 with an 
amplitude of 28% of that of mode 25. 

The absorbers are placed at the maxima modes 25 and 31, Fig. 
5-lb. Examination of the Peff matrix, Fig. 5-4b, for the chosen 
absorber locations, reveals moderate spatial coupling. However, a 
plot of the values of the off-diagonal terms of Peff, Fig. 5-4c, 
indicates that the frequencies are far enough apart to provide a 
net coupling effect which is negligible (none of the points fit on 
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the chart). Therefore, the pointing problem under analysis is a 
good example of an uncoupled case. 

5.3.1 Uncoupled Dynamic Optimization Results 
For the uncoupled dynamic optimization, an absorber is tuned 

to each of modes 25 and 31. Fig. 5-14 is a graphical representation 
of the optimization defined by Eq. 3-37 through 3-40, in which the 
cost J is plotted as a function of the mass ratio of the absorber 
on mode 25. The remainder of the absorber mass budget is applied to 
the absorber on mode 31. The error introduced by summation of the 
areas under the separate modal responses is small. The minimum 
cost occurs at p, = 0.0193, which correponds to P, = 0.0045. 

Given the absorber mass ratios, the spring and damper 
constants are computed using the classical steady state tuning 
laws. The results are listed in Table 5-3. 

The pitch response caused by a unit impulse, with absorbers 
tuned by the uncoupled dynamic optimization solution, is shown in 
Fig. 5-13c. The response includes all the modes listed in Fig. 
5-12. 

5.3.2 Parameter Optimization Results 

The parameter optimization algorithm is applied to the pitch 
response problem, with the same absorber mass distribution and 
locations as for the uncoupled dynamic optimization analysis. The 
absorber masses, spring constants, and damper constants for the 
parameter optimization solution are listed in Table 5-3. The closed 
loop frequencies and damping ratios are shown in Fig. 5-15. The 
corresponding transient response is shown in Fig. 5-13b. 

5.3.3 Payload Pointing Problem - Discussion 

The uncoupled dynamic optimization solution provides the best 
transient response, as evidenced by comparison of Figs. 5-13b and 
5-13c. The parameter optimization algorithm tuned absorber 1 
succesfully to the high mode (mode 31), but tuned absorber 2 
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Table 5-3. Absorber Parameters for Payload Pointing Problem. 

SPRING DAMPER 
MASS CONSTANT CONSTANT 
(LBS 1 (LB/IN) (LB/IN-SEC) 

1.66 2 2 8 1  15 .9  

2 2 8 1  1 4 . 1  3.98 

35 0.994 0 . 0 2 5 1  

35  1 .08  0.0625 
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between modes 25 and 31. Consenquently, the damping achieved in 
mode 25 is smaller than if the absorber was tuned to mode 25 alone, 
as was done for the uncoupled optimization solution. 

Further examination of the behavior of the parameter 
optimization algorithm reveals that the contribution of the 
absorber initial conditions to the performance index, as discussed 
in Sec. 4.6.5, affects the location of the minimum. The cost, as 
defined by Eq. (4-32b), associated with the response of Fig. 5-13c 
is actually higher than the cost associated with the response 
associated with Fig. 5-13b, even though the former response is 
clearly better. However, comparison of the partial cost due to 
structure initial conditions only (the first term in Eq. 4-32b) is 
smaller for the response with the uncoupled optimization solution 
than for the response with the parameter optimization solution. 

The frequency content and relative amplitudes for the 
responses of Figs. 5-13a, b, and c is presented in Fig. 5-16 for 
completeness. 

The optimization methods discussed and applied in the previous 
sections yield absorber masses, and spring and damper constants 
which reduce some response of a structure caused by an external 
disturbance. The practical application of the results will raise 
many hardware design problems, one of which is the absorber 
relative motion. Large displacements may be impractical, and small 
displacements and velocities may lead to 'binding' of the absorber. 

Absorber displacements and velocities are presented in Figs. 
5-17a and b for the tuned absorber of Sec. 5.2.2. The displacement 
and velocity scales correspond to an impulse of 1 lb-sec. 
Therefore, for a shuttle docking impulse of 500 lb-sec, a maximum 
displacement of 0.6 in, and maximum velocity of 1.65 in/sec are 
reached. For a crew motion disturbance of 25 lb-sec, the maximum 
displacement and velocity are 0.03 in. and 0.0825 in/sec. The 

I maximum displacement and velocity values show that large relative 

5.4 Absorber Relative Motion 
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motions do not present a design problem, but absorber binding may 
occur at small displacements and velocities. 

5.5 Space Station Applications Summary 

The parameter optimization and uncoupled absorber optimization 
methods are applied to example vibration damping problems on the 
dual keel configuration space station. The example problems 
considered are (1) the acceleration response at the lab module, and 
(2) the pointing response at a location on the lower payload boom. 
A generic disturbance impulse is applied at the location of the 
shuttle berthing node. The impulse may simulate either shuttle 
docking, or crew motion, depending on its magnitude. Two absorbers 
are tuned to minimize the response in each case. 

The parameter optimization and uncoupled optimization 
solutions both result in satisfactory responses for the 
acceleration response problem. A slightly better response is 
obtained with the parameter optimization solution, since 
cross-coupling effects are taken into account in the formulation of 
the optimization algorithm. 

Examination of the results for the acceleration response 
reveals that that the total mass budget initially allocated for the 
two absorbers (386 lbs) falls in the saturation region of the cost 
vs. total absorber mass curve, i.e., small variations in the total 
mass budget do not detract from or improve the transient response 
significantly. Additional test cases with a reduced mass budget 
( 7 7 . 2  lbs) demonstrate increased sensitivity of the performance 
cost to total mass budget. 

Variation of the mass distribution among absorbers for both 
the high and low total mass budget cases shows that the parameter 
optimization algorithm actually tunes one of the absorbers so that 
it does not affect the structure in the frequency domain of 
interest. This is attributed to possible interference between the 
absorbers through cross-coupling. For the low mass budget problem, 
detuning switches from absorber 1 to absorber 2 as the mass of 
absorber 1 is increased. 
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The payload pointing response example offers a lightly coupled 
problem. The uncoupled dynamic optimization solution yields a 
better response than the parameter optimization solution. The 
parameter optimization solution is restrained by the formulation of 
the performance index, which penalizes structural excitation caused 
by disturbances transmitted through the absorbers. The algorithm 
effectively tunes an absorber away from parameters which would 
allow energy transmission throught the absorber at significant 
modes of the closed loop system. This behavior of the algorithm is 
an interesting topic for further study. 

The absorber relative displacement and velocity are examined 
for the acceleration response case. Displacement and velocity 
magnitudes for shuttle docking or crew motion are not large, but: 
may lead to absorber binding problems. 
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SECTION 6 

DESIGN PROCEDURES 

Design procedures are developed from the analysis and results 
of Sections 3 ,  4 ,  and 5. The overall design process is considered 
and a design procedure is presented. A flow diagram of the design 
procedure is presented in Fig. 6-1. Each block of the diagram is 
briefly described in the following paragraphs. 

The major focus of this report is the development of 
algorithms which compute the optimal absorber parameters for a 
multi-degree-of-freedom system with several absorbers attached. 
Additional design variables which are considered in the design are 
absorber locations and total absorber mass budget. Further design 
constraints result from hardware considerations. Although outside 
the scope of this report, the hardware design considerations are 
briefly discussed. 

6.1 Vibration Problem Definition 

The location and direction of the vibrations to be suppressed 
are identified. The local vibration problem is influenced by 
disturbance sources and design requirements. 

6.2 Critical Mode Selection 

The natural modes of vibration which contribute to the 
response at the selected locations are identified for the chosen 
set of disturbance excitations. The relative amplitudes of the 
various modes in the total response dictate which modes are 
considered during absorber design. 

6.3 Absorber Mass Budget Allocation 

The major decision factor for the allocation of total absorber 
mass concerns the magnitudes of the modal masses corresponding to 
the modes of vibration to be damped. A mode with a large modal 
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mass requires a corresponding larger absorber mass for effective 
damping than a mode with a smaller modal mass. The total mass 
budget must be large enough to allow reasonable absorber to modal 
mass ratios for all the absorbers and modes involved in the 
problem. 

The choice of absorber to modal mass ratio must be 
sufficiently large to provide effective damping (for example, a 2% 
ratio provides satisfactory closed loop response for the simple 
2-DOF system, Sec. 3 . 3 . 3 ) .  On the opposite end of the scale, the 
total absorber mass may be too large. In this case the quality of 
the closed loop response is insensitive to changes in absorber 
mass, and a smaller mass can be used (Sec 5.2). 

6.4 Absorber Locations 

The choice of absorber locations, and the number of absorbers 
to be used must take into account the spatial coupling through 
absorber locations, and frequency coupling in the vibration 
problem. Some rules are: 

(1) Place absorbers at a location of maximum amplitude of the 
mode shape, so that a maximum absorber mass to modal mass 
ratio is achieved. If absorbers are placed at a location 
other than the maximum, Eq. (3-26) can be used to compute 
the additional mass required to achieve the same mass 
ratio. 

(2) When significant absorber coupling (i.e., both spatial 
and frequency) exists, use one absorber to damp the set 
of modes coupled by the absorber. Addition of another 
absorber may cause interference which degrades the 
response. 

6.5 Algorithm Selection 

The algorithm selection is influenced by the spatial and 
frequency coupling through the absorbers. The uncoupled dynamic 
optimization offers superior results for lightly coupled problems, 
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and the parameter optimization algorithm yields superior results 
for strongly coupled problems. 

6.6 Uncoupled Dynamic Optimization Algorithm 

The uncoupled dynamic optimization algorithm is described in 
Sec. 3.6. Given absorber locations, the algorithm yields the 
optimal mass distribution among the absorbers, under the assumption 
that no spatial coupling is introduced through the absorbers (Sec 
4.7). Spring and damper constants for each absorber are computed 
with the classical tuning laws for a 2-DOF system (Sec 3.2). 

6.7 Parameter Optimization Algorithm 

The parameter optimization algorithm (Sec 4.6) employs a 
gradient search method (Quasi-Newton) to find optimal values for 
the absorber spring and damper constants. The algorithm requires 
that mass distribution among the absorbers be specified. The 
initial guess for spring and damper constants may be obtained from 
the results of the uncoupled dynamic optimization algorithm, or the 
classical tuning laws for a specified absorber mass distribution. 

The optimal mass distribution of the uncoupled dynamic 
algorithm may also be used, but as demonstrated in Section 5.2 it 
is not necessarily the best distribution for a strongly coupled 
problem. 

6.8 Absorber Spring and Damper Constants 

The output parameters of the design procedure are the absorber 
spring constants and damper 

6.9 Hardware Design Issues 

strengths. 

The final step of the design procedure is shown in Figure 
The consideration of the hardware design issues associated 
construction of an absorber with the chosen optimal parameters 

6-1. 
with 
for ~ 
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k, c, m; the physical design of the absorber spring and damping 
elements, is outside of the scope of this study. However, some 
observations are noted here: Vibration absorbers can add passive 
damping to a structure through a variety of mechanisms including 
constrained layer treatments, friction devices, discrete viscous 
dampers, electromagnetic devices, and fluidic devices. The 
composite system of the spring and damper should have a net 
stiffness of k and a net damper strength of c. Ideally, these 
values would remain constant over the frequency, temperature, load, 
displacement, and velocity ranges of the operational plant 
structure. 

Two conceptual design examples are shown in Figure 6-2. 
Figure 6-2a depicts a large stroke, low frequency design which 
contains a viscoelastic damping material sandwiched between two 
plates. Figure 6-2b depicts a small displacement design where the 
tuning mass is supported only by the viscoelastic material. In 
this case, the viscoelastic material has both the proper stiffness, 
k and damping strength, c. 

Depending on the requirements of a specific application, the 
design of the absorber may become highly constrained by hardware 
issues. For example, viscoelastic materials typically have a loss 
factor (damping strength) that depends on temperature and 
frequency. For space applications, there are outgassing problems. 
For low-stroke applications requiring a very low value of c, the 
response of devices with moving parts may be dominated by friction 
and/or stiction effects. A low modal mass, low frequency 
application may dictate a spring stiffness which is too small to 
fabricate. Other applications may require stroke lengths that 
exceed the strain limit for the spring material. A trade study of 
the various design options available must be conducted in light of 
the requirements of a specific application. Fortunately, the 
results of previous sections of this report indicate that 
near-optimal absorber performance can be obtained in the presence 
of small variations in the spring stiffness, and even larger 
variations in the damper strength, especially for larger modal mass 
ratios. 
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For space Station applications, the dynamics and the low 
strain energy involved dictate a low frequency, low stroke, 
space-qualified design. A possible choice would be a magnetic 
device with no moving parts. Existing non-structural mass (i.e.? 
the resource modules) on the Space Station could be used to reduce 
the mass penalty. Ideally, the few absorbers required would be 
designed with variable stiffness and damping elements so as to 
permit optimal performance over a range of Space Station dynamic 
characteristics (Le., mode shapes) which vary with the distribution 
of mass during the buildup to a Growth Station. 

6.10 Remarks 

The design procedure described in the previous paragraphs is 
an iterative process formulated to interpret insight and visibility 
into an essentially nonlinear process. The decomposition of the 
process into several distinct stages allows the application of 
linear analysis; however, the construction of the design procedure 
highlights a number of topics which require further investigation. 
Among these are: the optimization of the number and locations of 
the absorbers, the incorporation of the absorber masses in the 
parameter optimization algorithm, and the investigation of 
tradeoffs between structural mass and absorber mass as means of 
suppressing vibrations. Further development in these topics will 
contribute to the refinement of the design procedure. 

126 



SECTION 7 

The optimal tuning of multiple tuned-mass dampers for the 

1 CONCLUDING REMARKS 

Modern control theory and parameter optimization techniques are 
applied to the general optimization problem. A design procedure 
for multi-absorber multi-DOF vibration damping problems is 
presented. 

I 

The performance of vibration absorbers designed using 
classical and other tuning laws is compared using one-mode dynamic 
models. Based on these results, a performance criterion for the 
optimal tuning of vibration absorbers for transient response is 

I The control design process for the general optimization 
1 problem is formulated as a linear output feedback control problem 

via the development of a feedback control canonical form. The 
design variables are expressed as control gains, and the analytical 
techniques of feedback control theory, both classical and modern, 

are used in the design process, the final remains passive; i.e., an 
active system is not being designed. The constrained nature of the 
feedback gain matrix makes the application of established output 
feedback solution methods difficult; therefore, a nonlinear 
parameter optimization method is developed and applied to an output 
feedback formulation of the vibration damping problem. 

I 
I are applied to absorber design. Although active control algorithms , 

’ 
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The complexity of the general optimization problem for 
multiple vibration absorbers on multi-DOF space structures requires 
its segmentation into smaller sub-problems. In the present design 
procedure, the choice of absorber mass, absorber locations, and 
absorber spring and damper constants are treated as sub-problems. 
The optimal absorber locations are found to be at the maxima of the 
eigenvectors of the modes which require damping. The total 
absorber mass budget is assumed to be constrained by mission 
requirements. System performance improves as the total absorber 
mass budget is increased until a saturation point where the 
addition of absorber mass provides little improvement in 
performance. Given the total absorber mass budget, the mass 
distribution among the absorbers is computed using the uncoupled 
dynamic optimization for cases which involve minimal absorber 
cross-coupling (i.e., each absorber affects only one mode and 
vice-versa). For highly coupled cases, trade studies are 
conducted. Finally, the optimal absorber spring and damper 
constraints are computed for uncoupled systems using classical 
tuning laws or computed for coupled systems by applying the 
parameter optimization algorithm. 

The uncoupled dynamic optimization and more general parameter 
optimization algorithms are applied to two sample problems on the 
NASA dual keel space station. They are the damping of 
micro-accelerations in the lab module and the suppression of 
payload pointing vibrations at the lower boom. Damping levels in 
the range of 10% - 20% are achieved with two tuned-mass dampers. 
For these Space Station examples passive dampers increased the 
damping considerably. The absorber weight penalty associated with 
the increased damping could be reduced by using existing attached 
masses or payloads for absorbers. 
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The potential damping performance gains obtained through the 
use of tuned-mass dampers on lightly-damped structures merits the 
further study of the hardware issues associated with these devices. 
Further study is recommended to investigate the hardware issues and 
to construct and test hardware concepts. Other recommendations 
include the further development of constrained optimization 
techniques and the optimization of combined passive and active 
control for vibration suppression. 
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